Oscilações pitónicas

Problemas de difícil resolução por métodos convencionais, mas que admitem uma solução simples e elegante.

Oscilações pitónicas

Mensagempor hexphreak em Quinta Mar 05, 2009 8:13 pm

Imagem

Consideremos a estrutura ilustrada acima, constituída por dois braços de comprimento l e massa desprezável, formando um "V" invertido com um ângulo fixo \theta entre eles, e um corpo de massa m no vértice. A estrutura oscila entre as duas posições extremas representadas a cinzento, tendo velocidade nula nessas posições. As oscilações começam na posição da esquerda. Sejam t_0 o instante em que a posição intermédia é atingida pela primeira vez e T o tempo decorrido até as oscilações pararem.

Considerando o atrito com o chão infinito (i.e. a estrutura não desliza), e \theta \ll 1, determinar T-t_0 :twisted:


P.S.: Este problema é pitónico por uma boa razão, que descobrirão se chegarem ao fim :P Mas também é algo difícil, por isso vão pedindo ajuda à medida que tentam resolver! Se quiserem posso dividir o problema em alíneas, para o aproveitarem melhor mesmo se não o conseguirem resolver.

P.P.S.: Lembrem-se que o objectivo é uma resposta de forma fechada; i.e. não "valem" séries, recursão, etc.
Avatar do utilizador
hexphreak
top-Quark!
top-Quark!
 
Mensagens: 1959
Registado: Segunda Nov 05, 2007 8:52 pm
Localização: Maia/Porto

Re: Oscilações pitónicas

Mensagempor jap em Quinta Mar 05, 2009 9:52 pm

Obrigado, Henrique! :D

Parece-me bem pitónico! :lol:
José António Paixão
Departamento de Física da FCTUC
Avatar do utilizador
jap
Site Admin
Site Admin
 
Mensagens: 6801
Registado: Quinta Nov 09, 2006 9:34 pm
Localização: Univ. de Coimbra


Voltar para Problemas tricky

Quem está ligado

Utilizadores a navegar neste fórum: Nenhum utilizador registado e 1 visitante