Imaginem dois corpos de massas



Calculem o tempo de viagem dos corpos até chocarem!

Nota: considerem que

Nota2: este problema é para caloiros, porque soube que o problema foi discutido este ano!

Irakian Monkey Escreveu:Andei praqui a inventar e achei uma expressao:
Se só por acaso estiver certa(probabilidade é menor que ganhar o euromilhoes) eu explico como fiz.
jap Escreveu:Este também é tricky, sim senhor...![]()
Para os "não caloiros" e que já conhecem o "truque" e sabem programar aqui fica o desafio: simulação computacional do problema para a terra e o sol - que também é um pouco tricky, mas de uma outra forma...
Se a Terra parasse de girar, e ignorando o efeito dos outros planeta, quanto tempo demorava a "cair" no Sol?
Irakian Monkey Escreveu:Andei praqui a inventar e achei uma expressao:
Se só por acaso estiver certa(probabilidade é menor que ganhar o euromilhoes) eu explico como fiz.
pmp Escreveu:Não queria ser desmancha prazeres, mas esse tempo considera que a aceleração de cada um dos corpos 1 e 2 é constante ao longo do percurso e isso não é verdade.
manuelmarque Escreveu:Irakian Monkey Escreveu:Andei praqui a inventar e achei uma expressao:
Se só por acaso estiver certa(probabilidade é menor que ganhar o euromilhoes) eu explico como fiz.
Exactamente! Foi mesmo a isso que eu cheguei... agora não consigo chegar a um valor numérico.Pensei q fosse possível, mas pelos vistos não é
Já agora, relativamente ao problema colocado pelo Prof. Paixão, cheguei a um tempo de. Parece-me tempo a menos... se bem que o Sol é muito maior e com muito mais massa que a Terra... nem dá para dizer sequer "Adeus, Terra..."
manuelmarque Escreveu:Agora entendo! O raio vai diminuindo, pelo que a aceleração é cada vez menor.
pmp Escreveu:manuelmarque Escreveu:Agora entendo! O raio vai diminuindo, pelo que a aceleração é cada vez menor.
Exacto!![]()
Aqui é que está a dificuldade do problema. Eu até agora ainda não cheguei a nada conclusivo.
Zé Teixeira Escreveu:Lembrem-se, não vale a pena tentarem achar a função que dá a posição em cada instante para depois determinarem o tempo de queda... porque a função não existe.
Tentem outros métodos. Lembrem-se de que o problema é tricky.
Voltar para Problemas resolvidos
Utilizadores a navegar neste fórum: Nenhum utilizador registado e 1 visitante