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Abstract
The motion of a cylinder on an inclined plane, acted upon by a torque along its
axis, is studied theoretically and experimentally. It is shown that the potential
for the centre-of-mass exhibits the features of a fold catastrophe potential, the
control parameter being related to the strength of the torque. This parameter
determines whether or not the system experiences stable equilibrium positions.
If it does, and depending on the initial conditions, it may perform oscillations
around an equilibrium position, or it may cross a no-return point and roll down.
A cylinder with a magnet inside, placed on an inclined plane in a region where
a uniform magnetic field is present, is a real example of such a system. We
constructed that system and report the data obtained in a set of experiments.

1. Introduction

Potentials of the generic form U(x) = x3 + bx , where x is the dynamical variable for a particle
and b is the ‘control parameter’, are well known in catastrophe theory [1–3]: U(x) is the
so-called ‘fold catastrophe’ potential. There are not many physical systems, either in classical
or modern physics, showing the fold catastrophe behaviour. An interesting example, recently
reported, is the Cartesian diver [4]. In this work, we present another example: a cylinder on
an incline with a torque along its axis.

From the generic form of the fold catastrophe potential it is clear that the potential has
a local maximum and a local minimum if b is smaller than the critical value b∗ = 0. When
the control parameter becomes larger than b∗ there is a transition and the potential has no
extremes. Irrespective of the value of the control parameter, x = 0 is always an inflexion
point. For b < 0, the stable equilibrium point is xe = √|b|/3 (minimum of U ) and the
unstable one is x ′

e = −√|b|/3 (maximum of U ). In the region −∞ < x < x ′
e there are no

equilibrium positions and x ′
e is a ‘no-return point’. The particle remains in the region x > x ′

e
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Figure 1. Forces acting upon the cylinder.

for suitable initial conditions and, if there is a slight friction, it goes eventually to xe (with no
friction, the system oscillates around the equilibrium position). Keeping the control parameter
fixed, the system will never return to the region x > x ′

e when it reaches the region x < x ′
e

with zero or negative velocity. At the critical value of the control parameter, the maximum
and minimum merge together at the inflexion point x = 0, which becomes a stationary point.
For b > 0, U(x) is an increasing function of x and there are no equilibrium points.

We will show that a cylinder placed on an inclined plane, additionally acted upon by
a torque along its axis, may oscillate around an equilibrium position, or may roll all the
way down. The shape of the centre-of-mass (CM) effective potential crucially depends on
the system parameters: by changing them, a local minimum of the potential may disappear,
causing a sudden change in the cylinder kinematics. That behaviour may be interpreted in the
framework of catastrophe theory.

We have constructed such a system consisting of a cylinder, with a magnet inside, placed
on an inclined plane in a region where there exists an uniform magnetic field produced by
Helmholtz coils. With that set-up the fold catastrophe behaviour was experimentally verified.

The paper is organized as follows. In section 2 we describe the mechanical system with the
fold catastrophe behaviour and, in section 3, we study its kinematics in more detail, integrating
numerically the equations of motion. In section 4 we describe the experimental set-up used to
perform the experiments and show the data. The conclusions are presented in section 5.

2. The system and its dynamics

Let us take a cylinder of radius R and mass m (the moment of inertia with respect to its axis is
I = 1

2 m R2), which may roll without slipping on a plane inclined at an angle θ to the horizontal.
The weight of the cylinder is Fg = mg. A torque, which can be regarded as resulting from two
constant horizontal forces �F1 and �F2, equal in magnitude (F1 = F2 = F), also acts upon the
cylinder. These forces are always applied at the same points on the cylinder: at P1, the force
points to the right and, at P2, the force points to the left. However, the pertinent point for the
following discussion is the existence of a torque along the cylinder axis like the one produced
by forces �F1 and �F2. The forces acting upon the cylinder are shown in figure 1.

We denote by φ the angle between a reference direction, e.g. the vertical direction pointing
downwards and the direction of the line joining the CM and P1. In figure 1, besides the weight,
�Fg , and the forces �F1 and �F2, the normal reaction, �N , and the static frictional force, �f , are also

shown. The force �N is perpendicular to the inclined plane and the frictional force is tentatively
represented pointing upwards but only the specific kinematical conditions may allow us to
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determine the actual direction of that force [5]. We assume that the static friction coefficient,
µs, is always large enough so that the condition f � µsmg cos θ is satisfied, i.e. the cylinder
rolls without slipping.

We define the direction y as indicated in the figure and, consistently, the angular
acceleration should be considered positive if the cylinder rotates clockwise around its axis,
i.e. if the angular acceleration points to the z direction (see figure 1). For the translation of the
CM along y, Newton’s Second Law yields

− f + mg sin θ = ma, (1)

where a is the (linear) acceleration. The torque due to forces �F1 and �F2 is

T = 2F R cos φ = T0 cos φ. (2)

We stress that the relevant quantity in the formalism is the torque and not the forces
themselves. The physical origin of the torque is at present not important, but in section 4 we
describe how the torque given by equation (2) can be applied to a cylinder in a real experiment.
For the rotation around the cylinder axis, one has

f R − T0 cos φ = Iα, (3)

where α is the angular acceleration. Because rolling takes place without slipping, a = Rα.
Using this expression in equation (3) and inserting the resulting expression in (1), one finds

ma = 2

3
mg sin θ − 2T0

3R
cos φ. (4)

Hence, the CM moves as a particle of mass m acted upon by the following force along the y
axis:

FR(y) = 2

3
mg sin θ − 2T0

3R
cos φ(y). (5)

Note that φ is a function of y. If there is no slipping, one has φ = y
R + φ0, where φ0 specifies

the orientation of the plane containing P1 and the cylinder axis with respect to the vertical
direction for y = 0.

The potential energy associated with force (5) is

U(y) = −2

3
mg sin θy +

2

3
T0 sin

(
y

R
+ φ0

)
. (6)

It is more convenient to introduce the dimensionless quantities x = (y/R) + φ0,
A = T0/mg R sin θ and V = U/ 2

3 mg R sin θ . Thus, after dropping constant terms, the
dimensionless ‘potential’ is given by

V (x) = −x + A sin x . (7)

This potential is sometimes referred to as the ‘tilted washboard potential’ [6]. The extremes
of the potential are the solutions of dV (x)/dx = 0, and one finds x = arccos(1/A). For
A < 1 there are no solutions, hence the potential has no extremes: it is a monotonic decreasing
function of x . On the other hand, for A > 1, the potential shows up minima and maxima at

xn = −ϕ ± 2nπ(minima) and xn′ = ϕ ± 2n′π(maxima), (8)

where 0 � ϕ � π
2 and n, n′ = 0, 1, 2, . . ..

The dimensionless potential V (x) is represented in figure 2 for three values of A. The
relation with the fold catastrophe potential U(x) = x3 + bx mentioned in the introduction is
obvious. Now, the parameter A plays the role of control parameter, its critical value being
A∗ = 1. For A > A∗ (broken curve in figure 2) the extremes of the potential are the points
given by equations (8). For A < A∗ (dotted curve in figure 2) the potential is a decreasing
function of x with no equilibrium positions. For A = A∗ (full curve in figure 2), ϕ = 0 and
x = 0,±2π,±4π, . . . are stationary and inflexion points.
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Figure 2. Dimensionless potential, V (x), for different values of the control parameter A.

For A < A∗ the system can never stay in static equilibrium. For A > A∗ it may remain
in static equilibrium or perform oscillations around a potential minimum. However, if it has
enough energy to transpose the first potential energy barrier on the right of that local minimum,
the cylinder is bound to roll down without return.

So far, the discussion has been kept on general grounds in the sense that no mention has
been made of the physical origin of the torque applied to the cylinder. Later on, in section 4,
we describe a real system showing up the fold catastrophe behaviour.

3. Kinematics

In order to find the dependence of the position of the CM with time, y = y(t), one has to
solve Newton’s equation (see equation (4)). In terms of variable x introduced in section 2 this
equation is

d2x

dt2
= C(1 − A cos x), (9)

where C = 2g sin θ/3R and A = T0/mg R sin θ is the control parameter already introduced in
section 2. The parameter C , which essentially depends on the geometry, is just a global factor
in Newton’s equation and does not determine whether or not the potential has got stability
points. For a given cylinder and incline, the control parameter A can be varied by changing
T0.

We performed a numerical integration of equation (9) using the Euler–Cromer
algorithm [7], vn+1 = vn + an�t and xn+1 = xn + vn+1�t . For a potential with stable minima
(A = 4 and C = 1 s−2), typical results for x = x(t) are shown in figure 3 for different initial
‘velocities’ (note that v = dx/dt is expressed in s−1 but, for the sake of simplicity, we call it
the velocity).

As an initial condition for x , we consider that the system is always at the stable equilibrium
position x0 = xe = −1.318 (see figure 2 and equation (8)). For an initial velocity
v0 = −1.00 s−1 it performs oscillations around the equilibrium point xe. The amplitude
of the oscillations increases if the magnitude of the velocity increases. For v0 = −3.18 s−1 the
system still remains in the attraction basin of the potential,having a periodic motion (eventually
it would stop, at xe, if a kinetic frictional force were present). However, for initial velocities
bigger than v0 = −3.19 s−1, the energy is enough to transpose the potential barrier on the right
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Figure 3. The dimensionless position x as a function of time, for A = 4 and C = 1 s−2, and
various initial velocities. The time step �t = 0.1 s was used in the Euler–Cromer algorithm.

of xe. The maximum of the potential barrier, located at x ′
e = −xe = 1.318 (see figure 2 and

equation (8)), is a no-return point. As long as the system goes beyond this point, it will never
return to the region where it was initially: the cylinder rolls all the way down, as indicated by
the broken curve in figure 3.

The frequency of the small oscillations around a stable equilibrium position is given by

ω =
√

C
√

A2 − 1. For A = 4 and C = 1 s−2 one finds τ = 2π/ω = 3.19 s, which is the
period of the almost harmonic oscillation represented by the full curve in figure 3.

4. Experiment

We constructed a system behaving as described in the previous sections. It is a cylinder having
a magnet inside with its magnetic moment, �µ, perpendicular to the cylinder axis. This cylinder
is placed on an incline, in a region filled with a constant and stationary magnetic field, as is
represented in figure 4.

The torque resulting from the interaction between the magnetic moment and the magnetic
field is along the cylinder axis and it is given by T = |�µ × �B| = µB cos φ, where φ is the
angle shown in figure 4 (see also figure 1). From the comparison of this expression with
equation (2) one concludes that T0 = µB and, therefore, the control parameter becomes
A = µB/mg R sin θ .

Figure 5 shows the experimental set-up used by us, consisting of the cylinder with the
magnet inside, the inclined plane and the Helmholtz coils, which produce an approximately
uniform magnetic field in the region between them.

For the Helmholtz coils used in our apparatus, the magnetic field is related to the current,
I , in the coils by B = κ I , where κ = (7.8 ± 0.2) × 10−4 T A−1, and therefore the critical
parameter is given by

A = µκ I

mg R sin θ
. (10)

The value of κ can be obtained theoretically from the diameter of the coils (30 cm, in our
case) and the number of turns in each coil (130, in our case). We checked the uniformity of
the magnetic field in the region between the coils and also the value of the constant κ , which
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Figure 4. Cylinder with a magnet inside whose magnetic moment, �µ, is perpendicular to the axis.
A vertical uniform stationary magnetic field, �B, fills the region of the incline. The angle between
the magnetic field and the magnetic moment is π

2 − φ (see also figure 1).

Figure 5. Experimental set-up showing the cylinder on the incline and the pair of Helmholtz coils.
The current in the coils, provided by the power supply, is measured with the ammeter (both on the
right side of the picture). The apparatus on the left, mounted on top of the incline, is a sonar sensor
used to measure the position and velocity of the cylinder.

(This figure is in colour only in the electronic version)

proved to yield accurate values for the magnetic field within 3%. The current I in the coils
was directly measured with an ammeter.

In our experiments we used a cylinder made of rigid plastic tube of radius
R = 7.50 ±0.05 mm and ∼6 cm long. A small, disc-shaped, Nd2Fe14B magnet (6±0.05 mm
radius, 5 ± 0.05 mm height), was carefully placed in the correct position inside the tube
which was then uniformly filled with plasticine. The mass of the ‘filled’ cylinder is
m = 18.37 ± 0.01 g.

In an independent experiment we determined the magnetic dipole moment of the
neodymium magnet, µ, that enters in equation (10), by measuring its magnetization, M ,
following the procedure recently described by Connors in [8]. In brief, the B field along the
disc axis was accurately measured as a function of the distance z from the centre of the magnet
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Table 1. For various angles (in deg) of the inclined plane, the minimal currents required to keep the
cylinder in static equilibrium are listed as well as the corresponding values for the control parameter
as given by equation (10). The results in the last column should be compared with the theoretical
value A = 1.

θ I/A A

7.5 ± 0.3 0.36 ± 0.01 0.90 ± 0.07
9.1 ± 0.3 0.45 ± 0.01 0.94 ± 0.07

10.0 ± 0.3 0.49 ± 0.01 0.93 ± 0.07
11.4 ± 0.3 0.57 ± 0.01 0.95 ± 0.07
13.2 ± 0.3 0.64 ± 0.01 0.92 ± 0.07
14.4 ± 0.4 0.70 ± 0.01 0.93 ± 0.06
15.1 ± 0.4 0.76 ± 0.01 0.96 ± 0.06
16.7 ± 0.4 0.83 ± 0.01 0.95 ± 0.06

with a GaAs Hall probe connected to a PHYWE 1610.93 teslameter. The magnetization
of the disc was obtained from a fit of the data to the theoretical expression of B(z) for a
disc-shaped homogeneous magnet. As explained in [8], there is a single fitting parameter,
namely the remnant inductionBr = µ0 M . We have obtained a good fit to our data for
Br = 1.25 ± 0.05 T, leading to the magnetization M = (9.9 ± 0.4) × 105 A m−1. From
this value and from the volume, V , of the magnet we obtained for the magnetic dipole moment
µ = V M = 0.57 ± 0.03 A m2. Our values for Br and µ compare rather well with typical data
for Nd2Fe14B magnets [9] and are also close to those determined by Connors [8] for a similar
magnet.

For various angles θ of the inclined plane we measured the minimal current, I , required to
keep the cylinder still in static equilibrium but about to roll down, i.e. the current that still keeps
the cylinder in the limit of static equilibrium. Table 1 shows, for several angles, these currents
and the calculated values for A, using experimental data in equation (10). Theoretically, A = 1,
corresponding to the critical point, and our results are in agreement with that.

For A > 1 there are equilibrium positions for the cylinder, as explained in the previous
sections. Thus, it may perform oscillations around one of such equilibrium points with
frequency (see the end of section 3)

f = 1

2π

√√√√2g sin θ

3R

√(
µκ I

mg R sin θ

)2

− 1 (11)

if the oscillation amplitudes are small.
In figure 6(a) the velocity as a function of time is represented for a real experiment

with the cylinder oscillating around one of the potential minima. In this particular case,
experimental conditions were A = 2.7 ± 0.2. The cylinder was initially slightly displaced
from its equilibrium position and released from rest. The position and velocity of the cylinder
were measured with a sonar sensor (see figure 5) connected to a PC through a PASCO750
interface. The frequency of the (damped) oscillations, obtained directly from the data shown
in figure 6(a), is 2.9 ± 0.1 Hz, comparing well with 2.8 ± 0.2 Hz obtained from equation (11),
using the experimental values for the various quantities entering into that equation.

In figure 6(b) the velocity of the cylinder versus time, v(t), is also now plotted for
another case: an initial up-thrust exceeding the maximum velocity allowed from the ‘no-
return’ condition was given to the cylinder. After reaching the maximum height, the cylinder
rolls down, surpassing each of the washboard potential energy minima until it eventually falls
from the bottom edge of the incline.

Let us finally remark that the magnet used in our experiment could be replaced by a
rectangular electric current loop around the cylinder, with its plane containing the cylinder
axis [10]. However, in practice, the magnet turns out to be simpler to use.
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Figure 6. Velocity of the cylinder as a function of time in real experiments for A = 2.7 ± 0.2 and
two different initial conditions. (a) Cylinder slightly displaced from its equilibrium position and
released from rest. (b) An initial up-thrust was given to the cylinder exceeding the critical velocity
of ‘no-return’. Note that v is positive when the cylinder moves down the plane. The data points
were collected using the sonar sensor (on the left side of the picture in figure 5).

5. Conclusions

We investigated the dynamics of a cylinder placed on an inclined plane with a torque
along its axis, besides the usual forces. We showed that the CM motion is governed by
a tilted washboard potential, which exhibits a ‘fold catastrophe’-like behaviour. Curiously,
tilted washboard potentials have been recently used to describe, in simplified models, a few
interesting phenomena such as Josephson tunnelling in superconducting junctions [6],quantum
transport of ultra-cold atoms by laser beams [11] and diffusion in semiconductors [12].

Regarding the statics of our system, for an adequate choice of the control parameter, the
cylinder remains in equilibrium. However, if the parameter decreases below the critical value,
the stable equilibrium point disappears and it starts rolling down.

When the control parameter allows for a potential with equilibrium points, the system may
perform oscillations around an equilibrium position, if its energy is small enough. However,
for other initial kinematical conditions, endowing the system with a sufficiently high total
energy, the cylinder may reach a no-return point, thereafter rolling down and moving away
from the equilibrium region. This is the typical behaviour of a particle in a fold catastrophe
potential.

We constructed a simple apparatus suitable for demonstrations, using a cylinder with a
small magnet inside, placed on an inclined plane in a region of a homogeneous magnetic field
provided by Helmholtz coils. The experimental data concerning the critical value of the control
parameter and the frequency of oscillations around the potential minima are in good agreement
with theory.

To the extent of our knowledge there are not many reported examples of simple one-
dimensional mechanical systems showing the ‘fold catastrophe’ behaviour. The system
presented in this paper is a good practical example of that behaviour, with the attraction
that both the experiments and the computer simulations are feasible and easy to implement.
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